Primetech offers a range of MINI AIR JET EDUCTORS to cater to numerous industrial applications. These eductors are ideally suitable for places where only an air motive source is available or an application where a motive liquid cannot be considered.

Principle of operation: When the compressed air is passed through the eductor motive nozzle, the pressure energy of air is converted to high velocity energy. High velocity air passage through nozzle results in vacuum build up at the eductor suction inlet. The high vacuum developed at the eductor suction inlet, enables the intake of suction liquid in to the eductor. The sucked liquid is mixed with the motive air stream and the air + liquid mixture passes through the venturi throat and diffuser. At the venturi diffuser, the velocity energy is converted to pressure energy.

Application

- Suction and clean up of liquid spill.
- Pumping out & draining a sump.
- Extracting liquid sample from process.
- In house, test bench vacuum source

Eductor construction & Material of construction

Air jet eductor is assembled out of machined components with threaded / male end connections (std. pipe threads BSP). Various materials can be employed for the air jet eductor depending on the type & nature of liquids being pumped.

Available material of construction

- Steel
- SS 304
- SS 316
- Monel
- Hastalloy C
- Titanium
- PVC
- Polypropylene
- Teflon, etc.
Dimensions table – E 400

<table>
<thead>
<tr>
<th>Model</th>
<th>Eductor Size mm</th>
<th>Dimension – mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>E400.25</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>E400.5</td>
<td>15</td>
<td>32</td>
</tr>
<tr>
<td>E400.75</td>
<td>20</td>
<td>42</td>
</tr>
<tr>
<td>E401.0</td>
<td>25</td>
<td>48</td>
</tr>
</tbody>
</table>

Performance data for a standard, 25 mm – E401 – Air jet eductor

- 6 Kg/cm²(g) – Motive air pressure
- Atmospheric discharge pressure
- Suction fluid water @ 27 °C
- Motive air flow rate – 150 Nm³/hr

<table>
<thead>
<tr>
<th>Suction Lift – m</th>
<th>1.0</th>
<th>2.0</th>
<th>3.5</th>
<th>4.0</th>
<th>5.0</th>
<th>6.0</th>
<th>7.0</th>
<th>7.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suction flow LPH of Water @ 27°C</td>
<td>220</td>
<td>180</td>
<td>150</td>
<td>130</td>
<td>95</td>
<td>75</td>
<td>55</td>
<td>45</td>
</tr>
</tbody>
</table>

Air Jet Eductor Capacity Ratios

<table>
<thead>
<tr>
<th>EDUCTOR SIZE</th>
<th>6</th>
<th>15</th>
<th>20</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPACITY RATIO</td>
<td>0.06</td>
<td>0.25</td>
<td>0.56</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: For your enquiry please fill in the questionnaire for us to Select a suitable air jet eductor.

LIQUID SAMPLING

Note: For your enquiry please fill in the questionnaire for us to Select a suitable air jet eductor.
EVACUATION OF SUCTION LINE OF CENTRIFUGAL PUMP FOR PRIMING

SUMP EMPTYING
POWER & COST SAVING AIR JET BLOWER (AIR JET COOLERS)

MOTIVE AIR
1 VOLUME

3-4 VOLUME IN SUCTION

4-5 VOLUME FOR COOLING

SURFACE TO BE COOLED

EVACUATION IN MEMBRANE BIO REACTORS

MOTIVE AIR PRESS

EFFLUENT WASTE WATER

MBR
TEST BED VACUUM SOURCE

MOTIVE AIR → AIR JET EDUETOR → THROTTLE VALVE → VENT

VACUUM GAUGE

TO VACUUM APPLICATION IN TEST BENCH (VESSEL EVACUATION OR VACUUM TEST)

LIQUID HOT METAL TRANSFER

FURNACE

MOTIVE AIR

LIQUID METAL

LADDLE